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Abstract

In this paper, local delaminations growing uniformly from the tips of angle-ply matrix cracks in composite laminates

loaded in tension are modelled theoretically. A 2-D shear lag method is used to determine stresses in a laminate rep-

resentative segment containing one crack and two crack tip delaminations. For the calculation of the strain-energy

release rate (SERR) associated with delaminations, the damaged layer is replaced with an equivalent homogeneous

one with effective elastic properties. Closed-form expressions for the total SERR and its mode I and mode II com-

ponents as a linear function of the first partial derivatives of the effective elastic properties of the damaged layer with

respect to delamination area are derived. Dependence of SERRs and the laminate stiffness properties on delamination

area, crack density and ply orientation angle is examined for balanced ½02=h2=�h2�s and unbalanced ½02=h2�s carbon/
epoxy laminates. The total SERR obtained in this study is compared to a simple closed-form expression for a uniform

local delamination derived in earlier work by O’Brien (Local delamination in laminates with angle-ply matrix cracks:

Part II Delamination Fracture Analysis and Fatigue Characterization. NASA Technical Memorandum 104076/AVS-

COM Technical Report 91-B-011). It appears that matrix crack density and delamination size influence the SERR value

significantly. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Delamination is a commonly observed failure mode in fibre-reinforced composite laminates subjected to
static or fatigue tensile or thermal loading. Its initiation is often triggered by resin (matrix) cracks running
parallel to the fibres in off-axis plies of the laminate, which result in high interlaminar stresses at the ply
interface.

Studies of delaminations induced by matrix cracking have been focusing predominantly on delamina-
tions caused by transverse cracks, i.e. matrix cracks in the 90� plies of a laminate. Crossman and Wang
(1982) made comprehensive observations of transverse cracking and delamination in balanced symmetric
½�25=90n�s, n ¼ 0:5;1;2;3;4;6;8 graphite/epoxy laminates. A significant reduction in the delamination onset
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strain was noted for the laminates with n P 4. A transition from edge delamination to local delaminations
growing from the tip of a matrix crack in the 90� ply occurred between n ¼ 3 and 4. O’Brien (1982) ob-
served the onset and growth of edge delamination in ½ð�30Þ2=90=90�s graphite/epoxy laminates under static
tension and tension–tension fatigue loading. Stiffness loss was monitored simultaneously with delamination
growth and found to decrease linearly with delamination size. Initiation and growth of local delaminations
from the tips of transverse cracks in cross-ply ½0=90n�s n ¼ 2;4;6 carbon/epoxy laminates under static tension
was examined by Takeda and Ogihara (1994). Delamination was noted to grow more rapidly and exten-
sively in the laminates with thicker 90� plies.

O’Brien (1985) suggested a simple closed-form expression for the strain-energy release rate (SERR) for
local delaminations growing uniformly from transverse crack tips. The expression is based on simple load
shearing rules and the classical laminated plate theory. It gives the SERR that depends only on the laminate
lay-up and thickness, the location of the cracked ply and subsequent delaminations, the applied load and
the laminate width, and is independent of delamination size. Also, the expression does not take into ac-
count the cumulative effect of damage.

Using a quasi-3D finite element (FE) analysis, Salpekar and O’Brien (1991) found that the SERR for
uniform local delamination calculated from O’Brien (1985) expression matched the value obtained by FE
analysis in the laminate interior. FE results for uniform local delaminations initiating from a transverse
crack in cross-ply ½02=904�s and balanced ½�45=904�s glass/epoxy laminates indicated that the SERR was
higher near the free edge. It increased with delamination length and reached a constant value at delam-
ination length of about four-ply thicknesses from the transverse crack in the interior as well as near the
edges. However, the peak value of SERR near the free edge has yet to be verified by convergence studies
(Bystrov, 2000).

Armanios et al. (1991) applied a shear deformation theory and sub-laminate approach to analyse local
delaminations originating from transverse cracks in ½�25=90n�s laminates. Predictions of their model, which
also takes into account hygrothermal effects, are in reasonable agreement with delamination onset strain
data by Crossman and Wang (1982).

Nairn and Hu (1992) conducted a two-dimensional variational analysis of crack-tip delaminations in
½ðSÞ=90n�s laminates, where ðSÞ denotes a balanced sub-laminate, e.g. ð�hmÞ. They predicted that matrix
cracking should reach some critical density before delamination initiates. The critical crack density for
delamination initiation is determined by material properties, laminate structure as well as fracture
toughnesses for matrix cracking and delamination. It is nearly independent of the properties of the sup-
porting sub-laminate ðSÞ.

More recently, Ashkantala and Talreja (1998) and Berthelot and Le Corre (2000) examined transverse
crack-tips delaminations in cross-ply laminates with shear friction between the delaminated plies. While
Berthelot and Le Corre (2000) assumed the magnitude of the interlaminar shear stress at the delaminated
interface to be constant, i.e. independent of delamination length, Ashkantala and Talreja (1998) considered
both linear and cubic polynomial shear stress distribution at the delamination interface.

Zhang et al. (1999) studied delaminations induced by transverse cracking at the ð/=90Þ interfaces in
½. . . =ui=/m=90n�s laminates loaded in tension. In particular, they were interested in the constraining effect of
the immediate neighbouring plies and remote plies on stiffness reduction and SERR for delaminations. A
sub-laminate-wise first-order shear deformation theory was used to analyse stress and strain fields. It was
found that the SERR for local delamination and stiffness reduction of the constrained transverse plies
largely depends on a local lay-up configuration of a damaged laminate. The authors suggested that SERR
for local delamination at the ð/=90Þ interface in a ½. . . =ui=/m=90n�s can be analysed using a ½/m=90n�s
laminate, where the 90� plies and their next neighbouring plies are subjected to the same laminate strain.

The shear lag method was successfully used by several authors to model onset and growth of transverse
crack-tip delaminations. Dharani and Tang (1990) used shear lag method to determine the interlaminar
shear and normal stresses at the delamination tip. Delamination was assumed to occur when the maximum
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interlaminar shear stress reached a critical value. Governing equations, formulated in terms of finite dif-
ferences, were solved numerically using an eigen-value technique.

Zhang et al. (1994a,b) used a 2-D improved shear lag analysis to predict the SERR for edge and local
delaminations in balanced symmetric ½�hm=90n�s laminates. For edge delamination, they were able to
capture a zigzag delamination pattern, i.e. edge delamination switching from one ðh=90Þ interface to an-
other through a matrix crack, and improve O’Brien’s formula for SERR for edge delamination (O’Brien,
1982) incorporating the effect of matrix cracking. For local delaminations, they obtained the SERR as a
function of crack density and delamination area. Their predictions for delamination onset strain agree well
with experimental data of Crossman and Wang (1982) and capture the transition from edge to local de-
lamination quite accurately.

Ogihara and Takeda (1995) used a modified shear lag method featuring interlaminar shear layer to
predict SERR and Young’s modulus reduction due to transverse crack tip delaminations in cross-ply
½0=90n�s laminates and to model interaction between transverse cracking and delamination. However, the
effect of cracking/delamination interaction was found to be negligible in prediction of delamination growth.

More recently, Selvarathinam and Weitsman (1999) observed and modelled, by means of shear lag
method, delaminations induced by matrix cracking in cross-ply laminates under environmental fatigue. By
comparing SERRs associated with matrix cracking and delamination, they were able to explain the ex-
tensive delaminations and reduced crack densities that arise under immersed fatigue conditions, as com-
pared with fatigue in air.

Berthelot and Le Corre (2000) applied shear lag method to analyse the stress fields in cross-ply laminates
containing transverse cracks and crack tip delaminations with shear friction between the delaminated plies.

Using an improved 2-D shear lag method (Zhang et al., 1994b) and Equivalent Constraint Model of the
damaged ply (Fan and Zhang, 1993), Kashtalyan and Soutis (1999, 2000a) examined the effect of crack-tip
delaminations on stiffness reduction. For cross-ply ½0m=90n�s laminates, local delaminations along transverse
as well as longitudinal cracks were considered. It was established that reduction in the laminate shear
modulus and Poisson’s ratio is much more significant than in the axial modulus. For balanced symmetric
½�hm=90n�s, the effect of constraining ply orientation angle h on reduction of the laminate in-plane stiffness
properties was also examined.

While transverse crack-tip delaminations have been the subject of numerous studies in the literature,
delaminations growing from the tips of angle-ply cracks have received considerably less attention.

O’Brien and Hooper (1991) and O’Brien (1991) observed matrix-crack-induced delaminations in sym-
metric angle ply ½02=h2=�h2�s carbon/epoxy laminates under quasi-static and fatigue tensile loading
ðh ¼ 15�; 20�; 25�; 30�Þ. Delaminations occurred in the ðh=�hÞ interface, bounded by the cracks in the ð�hÞ
ply and the stress-free edge. The laminated plate theory and a quasi-3D FE analysis were used to examine
stresses in the ð�hÞ ply. For the considered range of ply orientations, stresses normal to the fibres were found
to be compressive and shear stresses along the fibres to be high in the laminate interior, while near the free edge
high tensile stresses normal to the fibres were present. Two closed-form expressions for SERRwere derived on
the basis of simple load shearing rules: one for a local delamination growing from an angle-ply matrix crack
with a uniform delamination front across the laminate width (Fig. 1a), and one for a partial local delamin-
ation growing from an angle-ply matrix crack and bounded by the free edge (Fig. 1b). As for the transverse
crack tip delamination (O’Brien, 1985), SERR for uniform local delamination was independent of delam-
ination size andmatrix crack density, while for partial local delamination it depended on delamination length.
However, when the matrix crack length and the corresponding delamination length along the free edge is
small, the difference between the uniform and partial delamination solutions was found to be insignificant.

Salpekar and O’Brien (1993) used a 3-D FE analysis to study matrix-crack-induced delaminations in
ð0=h=�hÞs graphite/epoxy laminates (h ¼ 15�; 45�) loaded in tension. For ð0=45=�45Þs laminate, the SERR
for local delamination growing uniformly in the ð45=�45Þ interface from the matrix crack in the (�45�) ply
was found to be higher near the laminate edge than in the interior of the laminate.
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Later, Salpekar et al. (1996) computed SERRs associated with local delamination originating from
matrix cracks and bounded by the free edge in ð0=h=�hÞs and ðh=�h=0Þs graphite/epoxy laminates using a
3-D FE method. The total SERR was calculated using three different techniques: the virtual crack closure
technique, the equivalent domain integral technique, and the global energy balance technique. For both lay-
ups analysed, the fraction of the total SERR associated with mode I was greatest near the matrix crack and
decreased near the free edge. It also decreased with increasing delamination length and was influenced by
matrix crack length. However, no comparison with O’Brien’s (1991) closed-form expressions for uniform
and partial local delaminations was made.

In this paper, local delaminations growing uniformly from the tips of pre-existing matrix cracks in the
mid-layer of a general symmetric laminate loaded in tension are modelled theoretically using the approach
by Zhang et al. (1994b), initially developed for local delaminations growing from the transverse crack tips
in balanced symmetric ½�hm=90n�s laminates. Here, it is extended to local delaminations associated with
angle-ply matrix cracks and used to predict SERR and the laminate residual stiffness as functions of matrix
crack density and delamination length. For the SERR, comparison with the O’Brien’s closed-form ex-
pression for uniform local delamination (O’Brien, 1991) is made. The issue of transition from angle-ply
matrix cracking to delamination has not been addressed in the paper and is a subject of ongoing research.
For transverse cracking in the 90� ply, energetic considerations governing transition to local delamination
have been examined by Nairn and Hu (1992) and Selvarathinam and Weitsman (1998).

2. Stress analysis

A schematic of a symmetric ½ðSÞ=/�s laminate, consisting of the outer sub-laminate ðSÞ and the inner /
layer damaged by matrix cracks and local delaminations growing from their tips at the ðSÞ=/ interface is
shown in Fig. 2. The outer sub-laminate ðSÞ, or layer 1, may consist either of a single layer or a group of
layers and can also be damaged (in this case it needs to be replaced in the analysis with an equivalent
homogeneous layer with reduced stiffness properties). The laminate is referred to the global Cartesian co-
ordinate system xyz and local co-ordinate system x1x2x3, with the axis x1 directed along the fibres in the
damaged / layer, or layer 2. The laminate is subjected to in-plane biaxial tension �rrx and �rry . Since the
laminate is symmetric, no coupling exists between in-plane loading and out-of-plane deformation. Matrix

Fig. 1. Local delamination induced by angle-ply matrix cracks: (a) uniform across the laminate width; (b) partial.
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cracks are assumed to be spaced uniformly, with crack spacing 2s and span the whole width of the laminate.
Local delaminations are assumed to be strip shaped, with strip width 2‘ (Fig. 2).

Due to the periodicity of damage, the stress analysis may be carried out over a representative segment
containing one matrix crack and two crack-tip delaminations. Due to symmetry, it can be further restricted
to one quarter of the representative segment (Fig. 3), referred to the local co-ordinate system x1x2x3.

Let f~rrð1Þg and f~eeð1Þg denote the in-plane microstresses and microstrains in the layer 1, and f~rrð2Þg and
f~eeð2Þg denote the in-plane microstresses and microstrains in the layer 2 (i.e. stresses and strains averaged
across the respective layer thickness). Since it is assumed that there is no frictional contact between the
layers in the locally delaminated portion of the representative segment ð0 < jx2j < ‘; jx3j < h2Þ, the in-plane
microstresses in the delaminated portion are ~rrð2Þ

22 ¼ ~rrð2Þ
12 ¼ 0, i.e. this region is stress free. Assumption of

stress-free crack tip delamination surfaces, and the resulting implication that the portion of the damaged
ply bounded by matrix crack and delamination surfaces is stress free, has been widely used in the studies of
delaminations. Besides that, delaminations were assumed to behave in a self-similar manner, i.e. the
boundary conditions prescribed at the delaminated surfaces were assumed to be the same for small and
large delaminations.

In the perfectly bonded region ð‘ < jx2j < sÞ of the representative segment, they are determined from the
equilibrium equations

Fig. 2. Front and edge view of a ½ðSÞ=/�s laminate subjected to biaxial tensile loading and damaged by matrix cracks and uniform local

delaminations. Local (x1x2x3) and global (xyz) co-ordinate systems for the damaged / layer (front view in the negative x3 � z direction).
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d

dx2
~rrð2Þ

j2 � sj

h2

¼ 0; j ¼ 1; 2 ð1Þ

where sj are the interface shear stresses and h2 is the thickness of the / layer.
By averaging the out-of-plane constitutive equations for both layers across the layer thickness, the in-

terface shear stresses sj can be expressed in terms of the in-plane displacements and shear lag parameters
K21

12 as

sj ¼ Kj1ð~uuð1Þ
1 � ~uuð2Þ

1 Þ þ Kj2ð~uuð1Þ
2 � ~uuð2Þ

2 Þ ð2Þ

The shear lag parameters K11, K22, K12 � K21 are determined assuming that the out-of-plane shear stresses
~rrðkÞ

j3 vary linearly with x3 (Fig. 4), see Appendix A. Substitution of Eq. (2) into Eq. (1) and subsequent
differentiation yields

d2

dx2
~rrð2Þ

j2 þ Kj1ð~ccð1Þ12 � ~ccð2Þ12 Þ þ Kj2ð~eeð1Þ22 � ~eeð2Þ22 Þ ¼ 0; j ¼ 1; 2 ð3Þ

The strain differences ð~eeð1Þ22 � ~eeð2Þ22 Þ and ð~ccð1Þ12 � ~ccð2Þ12 Þ, involved in Eq. (3), can be expressed in terms of
stresses ~rrð2Þ

12 , ~rr
ð2Þ
22 using the constitutive equations for both layers, the laminate equilibrium equations below

Fig. 4. Variation of out-of-plane shear stresses.

Fig. 3. A quarter of the representative segment containing a matrix crack and delamination.
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vf~rrð1Þg þ f~rrð2Þg ¼ ð1þ vÞ½T �f�rrg ð4aÞ

½T � ¼
cos2 / sin2 / 2 sin/ cos/
sin2 / cos2 / �2 sin/ cos/

� sin/ cos/ sin/ cos/ cos2 / � sin2 /

24 35 ð4bÞ

f�rrg ¼ frx; ry ; 0gT; v ¼ h1=h2 ð4cÞ
and the assumption of the generalised plane strain condition

~eeð1Þ11 ¼ ~eeð2Þ11 ð5Þ
In the local co-ordinate system x1x2x3, the layer 2 is orthotropic,

~eeð2Þ11

~eeð2Þ22

~ccð2Þ12

8>>><>>>:
9>>>=>>>; ¼

bSS ð2Þ
11

bSS ð2Þ
12 0bSS ð2Þ

12
bSS ð2Þ
22 0

0 0 bSS ð2Þ
66

2664
3775

~rrð2Þ
11

~rrð2Þ
22

~rrð2Þ
12

8>>><>>>:
9>>>=>>>; ð6aÞ

while the layer 1 is anisotropic

~eeð1Þ11

~eeð1Þ22

~ccð1Þ12

8>>><>>>:
9>>>=>>>; ¼

bSS ð1Þ
11

bSS ð1Þ
12

bSS ð1Þ
16bSS ð1Þ

12
bSS ð1Þ
22

bSS ð1Þ
26bSS ð1Þ

16
bSS ð1Þ
26

bSS ð1Þ
66

2664
3775

~rrð1Þ
11

~rrð1Þ
22

~rrð1Þ
12

8>>><>>>:
9>>>=>>>; ð6bÞ

where ½bSS ðkÞ� is the compliances matrix for the kth layer.
Finally, Eq. (3) can be reduced to a system of two coupled second order ordinary differential equations

(see Appendix B)

d2~rrð2Þ
12

dx22
� N11~rr

ð2Þ
12 � N12~rr

ð2Þ
22 � P11�rrx � P12�rry ¼ 0 ð7aÞ

d2~rrð2Þ
22

dx22
� N21~rr

ð2Þ
12 � N22~rr

ð2Þ
22 � P21�rrx � P22�rry ¼ 0 ð7bÞ

Here Nij and Pij are laminate constants depending on the layer compliances bSS ðkÞ
ij , layer thickness ratio v,

shear lag parameters K11, K22, K12 and angle / (see Appendix B). Eqs. (7a) and (7b) can be uncoupled at the
expense of increasing the order of differentiation, resulting in a fourth order non-homogeneous ordinary
differential equation

d4~rrð2Þ
22

dx42
� ðN11 þ N22Þ

d2~rrð2Þ
22

dx22
� ðN21N12 � N11N22Þ~rrð2Þ

22 þ ½N11ðP21 þ aP22Þ � N21ðP11 þ aP12Þ��rrx ¼ 0 ð8Þ

Here a ¼ �rry=�rrx is the biaxiality ratio. The boundary conditions for Eq. (8) are prescribed at the stress-free
boundary between locally delaminated and perfectly bonded portions of the representative segment

~rrð2Þ
22 jx2 ¼�‘ ¼ 0 ~rrð2Þ

12 jx2 ¼�‘ ¼ 0 ð9Þ

Finally, the in-plane microstresses can be expressed in the following form

~rrð2Þ
11 ¼ a22~rr

ð2Þ
22 þ a12~rr

ð2Þ
12 þ bx�rrx þ by �rry ð10aÞ
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~rrð2Þ
j2 ¼ Aj

cosh k1ðx2 � sÞ
cosh k1ðs � ‘Þ

�
þ Bj

cosh k2ðx2 � sÞ
cosh k2ðs � ‘Þ þ Cj

�
�rrx; j ¼ 1; 2 ð10bÞ

where coefficients a22, a12, bx and by are given in Appendix B, kj are the roots of the characteristic equation
and Aj, Bj and Cj are constants depending on Nij and Pij, see Appendix C.

The in-plane microstresses are required to estimate the stiffness matrix of the damaged layer and sub-
sequently the residual stiffness properties of the entire laminate, as described in the following section.

3. Stiffness reduction

To determine the reduced stiffness properties of the damaged laminate, an equivalent laminate, in which
the damaged layer is replaced with an equivalent homogeneous one with degraded stiffness properties, is
considered. In the local co-ordinate system x1x2x3, the constitutive equations of the equivalent homoge-
neous layer are

f�rrð2Þg ¼ ½Qð2Þ�f�eeð2Þg ð11Þ
In the local co-ordinates, the modified in-plane stiffness matrix ½Qð2Þ� of the homogeneous layer equivalent

to the damaged one is related to the in-plane stiffness matrix ½bQQð2Þ� of the undamaged layer as

½Qð2Þ� ¼ ½bQQð2Þ� �
ðbQQð2Þ

12 Þ
2
=bQQð2Þ

22 K22
bQQð2Þ

12 K22 0bQQð2Þ
12 K22

bQQð2Þ
22 K22 0

0 0 bQQð2Þ
66 K66

264
375 ð12Þ

Here K22, K66 are the in-situ damage effective functions (IDEFs) (Zhang et al., 1994b). They can be ex-
pressed in terms of lamina macrostresses and macrostrains as

K22 ¼ 1� �rrð2Þ
22bQQð2Þ

12 �ee
ð2Þ
11 þ bQQð2Þ

22 �ee
ð2Þ
22

; K66 ¼ 1� �rrð2Þ
12bQQð2Þ

66 �cc
ð2Þ
12

ð13Þ

The lamina macrostresses f�rrð2Þg and macrostrains f�eeð2Þg are obtained by averaging respectively micro-
stresses f~rrð2Þg (Eqs. (10a) and (10b)) and microstrains f~eeð2Þg (Eq. (6a)), across the length of the represen-
tative segment. The lamina macrostresses �rrð2Þ

ij are

�rrð2Þ
11 ¼ a22�rr

ð2Þ
22 þ a12�rr

ð2Þ
12 þ bx�rrx þ by �rry ; k


j ¼ h2kj ð14aÞ

�rrð2Þ
j2 ¼ Aj

Dmc

k

1ð1� DldÞ tanh

k

1ð1� DldÞ

Dmc

�
þ Bj

Dmc

k

2ð1� DldÞ tanh

k

2ð1� DldÞ

Dmc
þ Cjð1� DldÞ

�
�rrx; j ¼ 1; 2

ð14bÞ
where Dmc ¼ h2=s denotes relative crack density and Dld ¼ ‘=s denotes relative delamination area. The
macrostrains in the individual homogeneous layers and the laminate are assumed to be equal

�eeð1Þ11 ¼ �eeð2Þ11 ¼ �ee11; �eeð1Þ22 ¼ �eeð2Þ22 ¼ �ee22; �ccð1Þ12 ¼ �ccð2Þ12 ¼ �cc12 ð15Þ
Using the constitutive equations for the layer 1 (Eq. (6b)) and equations of the global equilibrium of the
laminate (Eq. (4a)–(4c)) the lamina macrostrains in the layer 2 are

f�eeð2Þg ¼ ½bSS ð1Þ�v�1ðð1þ vÞ½T �f�rrg � f�rrð2ÞgÞ ð16Þ
where the transformation matrix ½T � is given by Eq. (4b). Thus, the lamina macrostresses (Eqs. (14a) and
(14b)) and macrostrains (Eq. (16)) are determined as explicit functions of the damage parameters Dmc, Dld .
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Finally, the modified stiffness matrix ½Q�2 of the equivalent homogeneous layer in the global co-ordinates
xyz can be obtained from the modified stiffness matrix ½Qð2Þ� in the local co-ordinates, Eq. (12) as

½Q�2 ¼ ½T ��1½Qð2Þ�½T ��T ð17Þ

where the transformation matrix ½T � is given by Eq. (4b). The extension stiffness matrix ½A� of the equivalent
laminate in the global co-ordinates xyz can be calculated as

½A� ¼
X

k

½Q�khk; k ¼ 1; 2 ð18Þ

where ½Q�1 is the in-plane stiffness matrix of layer 1, or the outer sub-laminate, in the global co-ordinates.

4. Strain-energy release rate

The total SERR Gld associated with local delaminations growing from the tips of matrix cracks is equal
to the first partial derivative of the total strain energy U stored in the damaged laminate with respect to the
total delamination area Ald provided the applied strains f�eeg are fixed and the matrix crack density
C ¼ ð2sÞ�1

remains unchanged

Gld ¼ � oU
oAld

����
f�eeg;C

ð19Þ

The SERR can be effectively calculated using the equivalent laminate introduced in the previous section.
In the global co-ordinates, if hygrothermal effects are neglected, the total strain energy stored in the
laminate element with a finite gauge length L and width w is

U ¼ wL
2

f�eegT½A�f�eeg ð20Þ

where the residual extension stiffness matrix ½A� of the equivalent laminate is given by Eq. (18). Noting that
the area of a single crack-tip delamination is ald ¼ 2‘w=j sin/j, (Fig. 2), the total delamination area is equal
to

Ald ¼ 2aldCL ¼ 2LwDld=j sin/j ð21Þ

Then the SERR, calculated from Eqs. (18)–(21) is

Gldð�ee;Dmc;DldÞ ¼ � h2

2
f�eegT o½Q�2

oDld
f�eegj sin/j ð22Þ

Under uniaxial strain, Eq. (22) simplifies to

Gldð�eexx;Dmc;DldÞ ¼ � h2

2
�ee2xx

oQxx;2

oDld
j sin/j ð23Þ

Calculation of the residual in-plane axial stiffness Qxx;2 using Eq. (12) and the transformation formulae
given by Eq. (17), yields the SERR associated with local delamination in terms of the IDEFs K22, K66 and
stiffness properties of the undamaged material bQQð2Þ

ij as
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Gldð�eexx;Dmc;DldÞ ¼ h2

2
�ee2xx

bQQð2Þ2
12bQQð2Þ
22

cos4 /

 "
þ 2bQQð2Þ

12 sin2 / cos2 / þ bQQð2Þ
22 sin4 /

!
oK22

oDld

þ 4bQQð2Þ
66 sin2 / cos2 /

oK66

oDld

#
j sin/j ð24Þ

The first partial derivatives of IDEFs that appear in Eq. (24) are explicit functions of the damage pa-
rameters Dmc, Dld and can be calculated analytically.

O’Brien (1991) suggested a simple closed-form expression for the total SERR associated with uniform
local crack-tip delamination at the ðh=�hÞ interface in a ½02=h2=�h2�s laminate with matrix cracks present in
the ð�hÞ ply. In the nomenclature of this paper it is given by

Gld

�ee2xx
¼ 3bEE2

xh
2

1

4bEEld

�
� 1

6bEEx

�
ð25Þ

where h is the laminate thickness, bEEx and bEEld are respectively the laminate modulus and the modulus of the
locally delaminated sub-laminate as calculated from the laminated plate theory. Since the locally delami-
nated ½02=h2�T sub-laminate is asymmetric, the value of bEEld in Eq. (25) will depend on whether the presence
of bending-extension and shear-extension coupling is reflected in the modulus calculation. For all ply
orientation angles h (i.e. from 5� to 90�), the influence of shear-extension coupling on the value of bEEld and
therefore the SERR was found to be significant. The shear constraint resulted in a greater bEEld and, hence,
correspondingly lower SERR. However, the effect of bending-extension coupling was proved to be small
(O’Brien, 1991). It is worth noticing that the SERR given by Eq. (25) is independent from the delamination
size. Also, the effect of matrix cracking is not taken into account when calculating the laminate modulus bEEx.
It will be shown later that Gld is reduced with increasing crack density.

It should be mentioned here that even under the uniaxial loading damage development in the off-axis
plies of general symmetric laminates always occurs under mixed mode conditions due to shear-extension
coupling. It is therefore important in the calculation of the total SERR to be able to separate mode I and
mode II contributions. For a ½ðSÞ=/�s laminate with damaged / layer modelled by an equivalent lami-
nate, the total SERR for crack tip uniform local delaminations is equal to the first partial derivative
of the portion of the total strain energy stored in the equivalent homogeneous layer with respect to damage
area

Gld ¼ � oU ð2Þ

oAld

����
f�eeg;C

ð26Þ

In the local co-ordinates (Fig. 2), this portion of the total strain energy can be separated into extensional
and shear parts

U ð2Þ ¼ U ð2Þ
I þ U ð2Þ

II ¼ Lwh2ð�rrð2Þ
11 �ee

ð2Þ
11 þ �rrð2Þ

22 �ee
ð2Þ
22 Þ þ Lwh2�rr

ð2Þ
12 �cc

ð2Þ
12 ð27Þ

Under uniaxial strain �eexx, strains and stresses in the equivalent homogeneous layer are

f�eeð2Þg ¼ fcos2 /; sin2 /; 2 cos/ sin/gT�eexx; f�rrð2Þg ¼ ½Qð2Þ�fcos2 /; sin2 /; 2 cos/ sin/gT�eexx ð28Þ
where the modified stiffness matrix ½Qð2Þ� of the equivalent homogeneous layer in the local co-ordinates is
given by Eq. (12). Substitution of Eqs. (21), (27) and (28) into Eq. (26) gives mode I and mode II con-
tributions into the total SERR as follows:

Gld
I ¼ � oU ð2Þ

I

oAld
¼ �ee2xxh2

2

bQQð2Þ2
12bQQð2Þ
22

cos4 /

 
þ 2bQQð2Þ

12 sin2 / cos2 / þ bQQð2Þ
22 sin4 /

!
oK22

oDld
j sin/j ð29Þ
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Gld
II ¼ � oU ð2Þ

II

oAld
¼ 2�ee2xxh2

bQQð2Þ
66

oK66

oDld
cos2 /j sin3 /j ð30Þ

The resulting total SERR Gld ¼ Gld
I þ Gld

II coincides with Eq. (24).

5. Results and discussion

Uniform local delaminations induced by angle-ply matrix cracking both in balanced and unbalanced
symmetric laminates will be analysed in this section. Matrix cracking in off-axis plies is known to introduce
some shear-extension coupling into balanced symmetric angle-ply laminates (Soutis and Kashtalyan, 2000),
however of much smaller extent than that exhibited in unbalanced symmetric angle-ply laminates. The lay-
ups to represent balanced and unbalanced laminates were chosen respectively as ½02=h2=�h2�s and ½02=h2�s.
The orientation of the cracked mid-layer layer is therefore / ¼ �h for ½02=h2=�h2�s laminate and / ¼ h for
½02=h2�s laminate. The material system is AS4/3506-1 graphite/epoxy that was earlier considered by O’Brien
and Hooper (1991) and O’Brien (1991). Its lamina properties are as follows: E11 ¼ 135 GPa, E22 ¼ 11 GPa,
G12 ¼ 5:8 GPa, m12 ¼ 0:301, single ply thickness t ¼ 0:124 mm.

5.1. Stress analysis

Balanced laminates: Fig. 5 shows the in-plane stresses in the ð�hÞ ply of the ½02=h2=�h2�s laminate as
function of ply orientation angle h under uniaxial ð�rry=�rrx ¼ 0Þ and biaxial ð�rry=�rrx ¼ 0:5; 1; 2Þ tensile loading
as calculated from the laminated plate theory (Daniel and Ishai, 1994). The applied stress is �rrx ¼ 200 MPa.
The in-plane stresses were transformed into the local co-ordinate system (Fig. 2), in order to determine
stresses normal to the fibres ð~rr22Þ and shear stresses along the fibres ð~rr12Þ since these stresses contribute
directly to the formation of matrix cracks. Under uniaxial tension, stresses normal to the fibres in the ð�hÞ
ply of the ½02=h2=�h2�s laminate are compressive for 15� < h < 40� and tensile for h > 40� (Fig. 5a).

Fig. 5. Ply stresses in the ð�hÞ ply of a balanced symmetric ½02=h2=�h2�s AS4/3506-1 laminate as function of ply orientation angle h
under uniaxial ð�rry=�rrx ¼ 0Þ and biaxial ð�rry=�rrx ¼ 0:5; 1; 2Þ tensile loading: (a) stresses normal to the fibres; (b) shear stresses. Applied

stress �rrx ¼ 200 MPa.
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However, a quasi-3D FE analysis by O’Brien and Hooper (1991) revealed that near the free edge, these
stresses become tensile. This explains why, under uniaxial loading, matrix cracks in ½02=h2=�h2�s laminates
with 15�6 h6 30� initiate at the free edge, but do not propagate into the laminate interior. Under biaxial
loading, stresses in the ð�hÞ ply normal to the fibres are tensile. For all considered biaxiality ratios
a ¼ �rry=�rrx, the highest normal stresses are observed for h ¼ 15�. They decrease significantly as h increases
and at h ¼ 60� reach almost a constant value that is almost independent of the biaxiality ratio. For
15�6 h6 60�, the magnitude of normal stresses increases with increasing biaxiality ratio, sometimes ex-
ceeding the value of the transverse tensile strength of the material. Under uniaxial tension, relatively high
shear stresses are present along the fibres in the ð�hÞ ply of the ½02=h2=�h2�s laminate (Fig. 5b).

In Fig. 5a and b the dotted line corresponds to the ultimate transverse tensile strength Yt and shear
strength S, respectively. According to the maximum stress criterion, once this value is exceeded, matrix
cracking will occur. In the cracked configuration, the stresses in the damaged ply are defined by Eqs. (14a)
and (14b) obtained from a 2-D shear lag analysis described earlier.

Unbalanced laminates: Fig. 6 shows the in-plane stresses in the h ply of the ½02=h2�s laminate as function
of ply orientation angle h under uniaxial ð�rry=�rrx ¼ 0Þ and biaxial ð�rry=�rrx ¼ 0:5; 1; 2Þ tensile loading as cal-
culated from the laminated plate theory (Daniel and Ishai, 1994). The applied stress is �rrx ¼ 100 MPa.
Again, the in-plane stresses were transformed into the local co-ordinate system (Fig. 2) in order to de-
termine stresses normal to the fibres (~rr22) and shear stresses along the fibres (~rr12) since these stresses
contribute directly to the formation of matrix cracks. Under uniaxial tension, stresses normal to the fibres
in the h ply of the ½02=h2�s laminate are compressive for h smaller than 25� and tensile for h greater than 25�
(Fig. 6a). Under biaxial loading, stresses in the ðhÞ ply normal to the fibres are tensile. For all considered
biaxiality ratios a ¼ �rry=�rrx, the highest normal stresses are observed for h ¼ 15�. They decrease significantly
as h increases and at h ¼ 75� reach almost a constant value that is almost independent of the biaxiality
ratio. For 15�6 h6 60�, the magnitude of normal stresses increases with increasing biaxiality ratio,
sometimes exceeding the value of the transverse tensile strength of the material. Relatively low shear
stresses are present along the fibres (Fig. 6b) in the h ply of the ½02=h2�s laminate.

Fig. 6. Ply stresses in the ðhÞ ply of an unbalanced symmetric ½02=h2�s AS4/3506-1 laminate as function of ply orientation angle h under

uniaxial ð�rry=�rrx ¼ 0Þ and biaxial ð�rry=�rrx ¼ 0:5; 1; 2Þ tensile loading: (a) stresses normal to the fibres; (b) shear stresses. Applied stress

�rrx ¼ 100 MPa.
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5.2. Stiffness degradation

Balanced laminates: Fig. 7 shows the variation of the laminate residual stiffness properties with the
relative delamination area Dld ¼ ‘=s in the ½02=302=�302�s laminate. Axial modulus Ex, transverse modulus
Ey , shear modulus Gxy and major Poisson’s ratio mxy normalised by their value for the undamaged laminate
are plotted in Fig. 7a. The axial/transverse shear-extension coupling coefficients that characterise shearing
in the xy plane caused by respectively axial/transverse stress are plotted in Fig. 7b. Matrix crack density in
the inner ð�30�Þ ply is assumed equal to C ¼ 2 cracks/cm. Values at Dld ¼ 0 indicate residual stiffness
properties of the laminate at this crack density without delaminations. It can be seen that local delamin-
ations further decrease the laminate moduli and, for the considered lay up, increase the Poisson’s ratio (Fig.
7a). Matrix cracking in angle-ply laminates is known to introduce the coupling between extension and shear
(Kashtalyan and Soutis, 2000b). In balanced ½02=h2=�h2�s laminates uniform local delaminations result in
an increase in the absolute value of the axial shear-extension coupling coefficient for h < 45� and of the
transverse shear-extension coupling coefficient for h > 45�. However, all shear-extension coupling coeffi-
cients are significantly smaller than those for unbalanced laminates (see later Fig. 8b).

Unbalanced laminates: Fig. 8 shows the variation of the laminate residual stiffness properties with the
relative delamination area Dld in the ½02=302�s laminate. Axial modulus Ex, transverse modulus Ey , shear
modulus Gxy and major Poisson’s ratio mxy normalised by their value for the undamaged laminates are
plotted in Fig. 8a. The axial/transverse shear-extension coupling coefficients that characterise shearing in
the xy plane caused by respectively axial/transverse stress are plotted in Fig. 8b. Matrix crack density in the
30� ply is assumed equal to C ¼ 2 cracks=cm, values at Dld ¼ 0 indicate residual stiffness properties of the
laminates at this crack density without delaminations. It can be seen that reduction of the laminate moduli
and, for the considered lay up, increase the Poisson’s ratio due to local delaminations are more significant
in the unbalanced ½02=302�s laminate than in the balanced ½02=302=�302�s laminate with the same orientation
of the damaged ply. Matrix cracking and crack tip delaminations are expected to amplify the shear-
extension coupling exhibited in the undamaged unbalanced ½02=h2�s laminates. As in balanced ½02=h2=�h2�s
laminates, crack tip uniform local delaminations in unbalanced laminates result in an increase in the ab-
solute value of the axial shear-extension coupling coefficient for h < 45� and of the transverse shear-
extension coupling coefficient for h > 45�.

Fig. 7. Residual stiffness properties of a balanced symmetric ½02=302=�302�s AS4/3506-1 laminate as a function of relative delamination

area Dld : (a) normalised moduli and Poisson’s ratio; (b) shear-extension coupling coefficients. Matrix crack density 2 cracks/cm.
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5.3. Strain energy release rate for local delamination

Balanced laminates: As evidenced by Eq. (24), under uniaxial strain SERR varies linearly with the square
of the applied strain �ee2xx. The normalised SERR Gld=�ee2xx may be used to study the effect of damage sepa-
rately. Fig. 9 shows the normalised SERR Gld=�ee2xx, calculated from Eq. (24) as a function of the delam-

Fig. 8. Residual stiffness properties of an unbalanced symmetric ½02=302�s AS4/3506-1 laminate as a function of relative delamination

area Dld : (a) normalised moduli and Poisson’s ratio; (b) shear-extension coupling coefficients. Matrix crack density 2 cracks/cm.

Fig. 9. Normalised SERR Gld=�ee2xx for uniform local delamination in a cracked ½02=252=�252�s AS4/3506-1 laminate as a function of

normalised delamination length ‘=t. Matrix crack spacing s ¼ 20t and 40t.
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ination length normalised by the single ply thickness ‘=t. The laminate lay up is ½02=252=�252�s, and crack
half spacings are s ¼ 40t and s ¼ 20t. This is equivalent to the crack densities of approximately C ¼ 1 and
2 cm�1 respectively. It can be seen that the present approach gives the SERR for uniform local delamin-
ation that depends both on crack density and delamination length. The result of Eq. (25) for the same lay
up is found equal to 12.7 MJ/m2 provided shear-extension coupling and bending-extension coupling are
taken into account (O’Brien, 1991). Still, it is much higher than our predictions, since the model of Eq. (25)
is for a single isolated matrix crack and associated local delamination and does not account for the cu-
mulative effect of multiple cracking and local delaminations as illustrated in Fig. 2.

Fig. 10 shows predictions of the normalised SERR Gld=�ee2xx associated with uniform local delamination in
½02=h2=�h2�s laminates calculated from Eq. (24). Results are plotted as function of the relative delamination
area Dld and are given for the range of ply orientation angle h from 15� to 75�. Matrix crack density in the
inner ð�hÞ ply of the laminate is assumed equal to C ¼ 1 crack/cm. It may be seen that the normalised
SERR depends linearly on the relative delamination area, decreasing as the delamination area increases.
This relationship is observed for all ply orientation angles up to Dld ¼ 80%, after which the value of Gld=�ee2xx
falls more steeply. For the same delamination area, the normalised SERR associated with local delamin-
ation is higher for greater values of h.

Fig. 11 shows predictions of the normalised SERR Gld=�ee2xx at the onset of local delamination ðDld ¼ 0Þ as
a function of the crack density in the ð�hÞ ply of ½02=h2=�h2�s laminates. It can be seen that, for the same
crack density, the normalised SERR at the delamination onset is higher for greater values of h, which will
translate into lower onset strain value. For all ply orientation angles h, SERR at the delamination onset
depends linearly on matrix crack density, slightly decreasing as the crack density increases. For instance, for
the ½02=452=�452�s laminate the difference between the values of Gld=�ee2xx at 0.5 and 5 cracks/cm is 8.5%.

Fig. 10. Normalised SERR Gld=�ee2xx for uniform local delamination in a cracked balanced symmetric ½02=h2=�h2�s AS4/3506-1 laminate

as a function of relative delamination area Dld . Matrix crack density 1 crack/cm.
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Reduction in the normalised SERR value will translate into a decrease in the delamination onset strain in
laminates with higher matrix crack density.

Using Eqs. (29) and (30), the contributions of mode I and mode II into the total SERR Gld=�ee2xx at the
onset of local delamination ðDld ¼ 0Þ are estimated for ½02=h2=�h2�s laminates and plotted in Fig. 12 as a
function of the cracked ð�hÞ ply orientation angle. It can been seen that Gld

I =�ee
2
xx increases monotoni-

cally with increasing h, while Gld
II =�ee

2
xx reaches a maximum value at approximately h ¼ 50�. Also, for

½02=302=�302�s and ½02=452=�452�s laminates Gld
II > Gld

I . Fig. 12 suggests that delamination will initiate at
relatively low applied strain in a 90� cracked lamina driven mainly by mode I, while in a 15� cracked lamina
will initiate at considerably higher applied strain.

Unbalanced laminates: Fig. 13 shows predictions of the normalised SERR Gld=�ee2xx associated with uni-
form local delamination in unbalanced ½02=h2�s laminates calculated from Eq. (24). Results are plotted as a
function of the relative delamination area Dld and are given for the range of ply orientation angles h from
15� to 90�. Matrix crack density in the inner h ply of the laminate is assumed equal to 1 crack/cm. As in
balanced laminates (Fig. 10), SERR decreases as the delamination area increases. However, in unbalanced
laminates the dependence of the normalised SERR on the relative delamination area is non-linear for all ply
orientation angles. Also, for the same delamination area, the normalised SERR associated with local
delamination is not necessarily higher for greater values of h. For example, for delaminations with
Dld < 40% the value SERR for the ½0=60�s laminate is greater than for the cross-ply ½0=90�s laminate, while
for Dld > 40% the opposite is true.

Fig. 14 shows predictions of the normalised SERR Gld=�ee2xx at the onset of local delamination ðDld ¼ 0Þ as
a function of the crack density in the h ply of ½02=h2�s laminates. For all ply orientation angles h, strain
energy-release rate at the delamination onset depends linearly on matrix crack density, slightly decreasing

Fig. 11. Normalised SERR Gld=�ee2xx for uniform local delamination in a cracked balanced symmetric ½02=h2=�h2�s AS4/3506-1 laminate

as a function of crack density. Relative delamination area Dld ¼ 0 (onset of delamination).
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as the crack density increases. This will translate into an increase in the delamination onset strain in
laminates with higher matrix crack density.

Contributions of mode I and mode II into the total SERR Gld=�ee2xx at the onset of local delamination
ðDld ¼ 0Þ in ½02=h2�s laminates are plotted in Fig. 15 as a function of the cracked h ply orientation angle. It
can been seen that Gld

I =�ee
2
xx reaches a maximum value at approximately h ¼ 75� while Gld

II =�ee
2
xx reaches a

maximum value at approximately h ¼ 55�.

6. Conclusions

In this paper, local delaminations growing uniformly from the tips of matrix cracks in an angle-ply
laminate loaded in tension are modelled theoretically. A 2-D shear-lag analysis is used to determine ply
stresses in a representative segment and the equivalent layer model is applied to derive expressions for mode
I, mode II and the total SERR associated with uniform local delaminations. These expressions could be
used with appropriate fracture criteria to estimate the onset of local delamination in an already cracked off-
axis laminate.

Dependence of SERRs and the laminate stiffness properties on delamination area, crack density and ply
orientation angle h is examined for balanced ½02=h2=�h2�s and unbalanced ½02=h2�s carbon/epoxy laminates.
It is found that SERR depends linearly on crack density both in balanced and unbalanced laminates. The
dependence on delamination area is linear in balanced and non-linear in unbalanced laminates. Mode I

Fig. 12. Normalised SERRs Gld
I =�ee

2
xx (mode I contribution), Gld

II =�ee
2
xx (mode II contribution) and Gld=�ee2xx (total) in a cracked balanced

symmetric ½02=h2=�h2�s AS4/3506-1 laminate as a function of cracked ð�hÞ ply orientation angle. Matrix crack density 1 crack/cm,

relative delamination area Dld ¼ 0 (onset of delamination).
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contribution into the total SERR increases monotonically with increasing cracked ply orientation angle in
balanced ½02=h2=�h2�s laminates and reaches a maximum at h ¼ 75� in unbalanced ½02=h2�s laminates.
However, dependence of mode II contribution on the cracked ply orientation angle in balanced and un-
balanced laminates is similar––it reaches a maximum value at h between 50� and 55�.

Comparison with results obtained by O’Brien (1991) shows that O’Brien’s closed-form expression for
uniform local delamination significantly overestimates the value of the total SERR leading to lower theo-
retical strains for the initiation of local delamination and therefore over-conservative designs. Also, it gives
the total SERR as independent of delamination area and does not take into account the cumulative effect of
damage.

It is established that, for the same ply orientation angle, crack density and delamination area, damage
induced changes in stiffness properties are much more significant in unbalanced ½02=h2�s laminates than in
balanced ½02=h2=�h2�s laminates. In near future work, the analytical predictions will be compared to nu-
merical (finite element) and experimental data, which for the lay ups, damage modes and loading conditions
examined in this study are currently not available.
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Fig. 13. Normalised SERR Gld=�ee2xx for uniform local delamination in a cracked unbalanced symmetric ½02=h2�s AS4/3506-1 laminate as

a function of relative delamination area Dld . Crack density 1 crack/cm.
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Appendix A

Variation of the out-of-plane shear stresses has the form

rð2Þ
j3 ¼ sj

h2

x3; 06 jx3j6 h2; j ¼ 1; 2 rð1Þ
j3 ¼ sj

h1

ðh � x3Þ; h2 6 jx3j6 h ðA:1Þ

Constitutive equations for the out-of-plane shear stresses
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After substituting Eq. (A.2) into Eq. (A.1), multiplying them by x3 and by h � x3 respectively and inte-
grating with respect to x3 we get
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Here fV g ¼ fuð1Þgjx3 ¼ h2
¼ fuð2Þgjx3 ¼ h2

are the in-plane displacements at the interface. After rearranging
Eq. (A.3) become

Fig. 14. Normalised SERR Gld=�ee2xx for uniform local delamination in a cracked unbalanced symmetric ½02=h2�s AS4/3506-1 laminate as

a function of crack density. Relative delamination area Dld ¼ 0 (onset of delamination).

M. Kashtalyan, C. Soutis / International Journal of Solids and Structures 39 (2002) 1515–1537 1533



~uuð1Þ
1

~uuð1Þ
2

( )
� ~uuð2Þ

1

~uuð2Þ
2

( )
¼ h1

3

bQQð1Þ
55

bQQð1Þ
45bQQð1Þ

45
bQQð1Þ

44

" #�1
0@ þ h2

3

bQQð2Þ
55

bQQð2Þ
45bQQð2Þ

45
bQQð2Þ

44

" #�1
1A s1

s2

� �
ðA:4Þ

Inversion of Eq. (A.4) leads to
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Appendix B

On referring to the constitutive equations, Eqs. (6a) and (6b), the generalised plane strain condition, Eq.
(5), becomes

bSS ð1Þ
11 ~rr

ð1Þ
11 þ bSS ð1Þ

12 ~rr
ð1Þ
22 þ bSS ð1Þ

16 ~rr
ð1Þ
12 ¼ bSS ð2Þ

11 ~rr
ð2Þ
11 þ bSS ð2Þ

12 ~rr
ð2Þ
22 ðB:1Þ

Fig. 15. Normalised SERRs Gld
I =�ee

2
xx (mode I contribution), Gld

II =�ee
2
xx (mode II contribution) and Gld=�ee2xx (total) in a cracked unbalanced

symmetric ½02=h2�s AS4/3506-1 laminate as a function of cracked h-ply orientation angle. Matrix crack density 1 crack/cm, relative

delamination area Dld ¼ 0 (onset of delamination).
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Using the laminate equilibrium equations, Eqs. (4a)–(4c), stresses in the constraining layer (layer 1) can be
excluded, so that the microstress component ~rrð2Þ

11 is given by

~rrð2Þ
11 ¼ a22~rr

ð2Þ
22 þ a12~rr

ð2Þ
12 þ bx�rrx þ by �rry ðB:2Þ
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11
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Strain differences are expressed in terms of stresses as

~ccð1Þ12 � ~ccð2Þ12

~eeð1Þ22 � ~eeð2Þ22

( )
¼ � 1

v
L11 L12

L21 L22

� �
~rrð2Þ
12

~rrð2Þ
22

( )
þ 1

v
M11 M12

M21 M22

� �
�rrx

�rry

� �
ðB:3Þ

Here

L11 ¼ bSS ð1Þ
66 þ a12

bSS ð1Þ
16 þ vbSS ð2Þ

66 ; L12 ¼ bSS ð1Þ
26 þ a22

bSS ð1Þ
16

L21 ¼ bSS ð1Þ
26 þ a12

bSS ð1Þ
12 þ va12

bSS ð2Þ
12 ; L22 ¼ bSS ð1Þ

22 þ a22
bSS ð1Þ
12 þ vðbSS ð2Þ

22 þ a22
bSS ð2Þ
12 Þ ðB:4aÞ

M11 ¼ ð1þ vÞ ðbSS ð1Þ
16

h
þ a12

bSS ð2Þ
11 Þ cos2 / þ ðbSS ð1Þ

26 þ a12
bSS ð1Þ
12 Þ sin

2 / � ðbSS ð1Þ
66 þ a12

bSS ð1Þ
16 Þ sin/ cos/

i
M21 ¼ ð1þ vÞ ðbSS ð1Þ

12

h
þ a22

bSS ð1Þ
11 Þ cos2 / þ ðbSS ð1Þ

22 þ a22
bSS ð1Þ
12 Þ sin

2 / � ðbSS ð1Þ
26 þ a22

bSS ð1Þ
16 Þ sin/ cos/

i
M12 ¼ ð1þ vÞ ðbSS ð1Þ

16

h
þ a12

bSS ð2Þ
11 Þ sin

2 / þ ðbSS ð1Þ
26 þ a12

bSS ð1Þ
12 Þ cos2 / þ ðbSS ð1Þ

66 þ a12
bSS ð1Þ
16 Þ sin/ cos/

i
M22 ¼ ð1þ vÞ ðbSS ð1Þ

12

h
þ a22

bSS ð1Þ
11 Þ sin

2 / þ ðbSS ð1Þ
22 þ a22

bSS ð1Þ
12 Þ cos2 / þ ðbSS ð1Þ

26 þ a22
bSS ð1Þ
16 Þ sin/ cos/

i
ðB:4bÞ

Substitution into the equilibrium equations (Eq. (3)) yields the following coupled 2nd order differential
equations

d2

dx2
~rrð2Þ
12

~rrð2Þ
22

( )
� 1

h1

K11 K12

K21 K22

� �
L11 L12

L21 L22

� �
~rrð2Þ
12

~rrð2Þ
22

( ) 
þ M11 M12

M21 M22

� �
�rrx

�rry

� �!
¼ 0 ðB:5Þ

or

d2

dx2
~rrð2Þ
12

~rrð2Þ
22

( )
� N11 N12

N21 N22

� �
~rrð2Þ
12

~rrð2Þ
22

( )
þ P11 P12

P21 P22

� �
�rrx

�rry

� �
¼ 0 ðB:6Þ

where ½N � ¼ h�1
1 ½K�½L� and ½P � ¼ h�1

1 ½K�½M �, with matrices ½K�, ½L� and ½M � defined by Eqs. (A.6), (B.4a) and
(B.4b) respectively.
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Appendix C

A1 ¼
k2
1 � N22

N21

A2; B1 ¼
k2
2 � N22

N21

B2; C1 ¼ �C2N22 þ P21 þ aP22

N21

ðC:1Þ

A2 ¼ �ðP21 þ aP22ÞðN21N12 � N11N22Þ þ Rk2
2

ðk2
2 � k2

1ÞðN21N12 � N11N22Þ
; B2 ¼

ðP21 þ aP22ÞðN21N12 � N11N22Þ þ Rk2
1

ðk2
2 � k2

1ÞðN21N12 � N11N22Þ
ðC:2Þ

C2 ¼
R

N21N12 � N11N22

; R ¼ N11ðP21 þ aP22Þ � N21ðP11 þ aP12Þ ðC:3Þ
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